Physiological and morphological plasticity in Stylophora pistillata larvae from Eilat, Israel, to shallow and mesophotic light conditions

نویسندگان

چکیده

•Stylophora pistillata coral larvae from Eilat have depth-dependent phenotypes•Larval survival and settlement did not depend on origin or experiment light levels•Juvenile corals grew fastest in their native parental habitat•Algal symbiont photoacclimation to novel conditions occurred within 35 days Mesophotic reefs been proposed as climate change refugia but are synonymous ecosystems with shallow remain exposed anthropogenic impacts. Planulae the reef-building Stylophora pistillata, Gulf of Aqaba, 5- 45-m depth were tested ex situ for capacity settle, grow, acclimate reciprocal conditions. Skeletons scanned by phase contrast-enhanced micro-CT study morphology. Deep planulae had reduced volume, smaller diameter settlement, greater algal density. Light significant impact mortality rates. Photosynthetic acclimation symbionts was evident 21–35 after growth rate polyp development slower individuals translocated away compared controls. Though our data reveal rapid acclimation, rates limited skeletal modification likely limit potential mesophotic settle reefs. In last few decades, increasingly damaged impacts including change, eutrophication, overfishing.1Hughes T.P. Barnes M.L. Bellwood D.R. Cinner J.E. Cumming G.S. Jackson J.B.C. Kleypas J. Van De Leemput I.A. Lough J.M. Morrison T.H. et al.Coral anthropocene.Nature. 2017; 546: 82-90https://doi.org/10.1038/nature22901Crossref PubMed Scopus (1030) Google Scholar,2Carpenter K.E. Abrar M. Aeby G. Aronson R.B. Banks S. Bruckner A. Chiriboga Cortés Delbeek J.C. DeVantier L. al.One-third face elevated extinction risk local impacts.Science. 2008; 321: 560-563https://doi.org/10.1126/SCIENCE.1159196Crossref (0) Scholar,3Hoegh-Guldberg O. Poloczanska E.S. Skirving W. Dove Coral reef under ocean acidification.Front. Mar. Sci. 4https://doi.org/10.3389/fmars.2017.00158Crossref (380) Scholar These often most visibly reefs, whereas (beyond 30 m water depth) can host relatively stable populations,4Bak R.P.M. Nieuwland Meesters E.H. crisis deep reefs: years constancy Curacao Bonaire.Coral Reefs. 2005; 24: 475-479https://doi.org/10.1007/S00338-005-0009-1Crossref some cases higher abundance larger colonies.5Kramer N. Tamir R. Eyal Loya Y. morphology portrays spatial distribution population size-structure along a 5–100 gradient.Front. 2020; 7: 615https://doi.org/10.3389/FMARS.2020.00615/BIBTEXCrossref Consequently optimistic Reef Refuge Hypothesis emerged.6Glynn P.W. bleaching: facts, hypotheses implications.Global Change Biol. 1996; 2: 495-509https://doi.org/10.1111/j.1365-2486.1996.tb00063.xCrossref (609) Scholar,7Bongaerts P. Ridgway T. Sampayo E.M. Hoegh-Guldberg Assessing ‘deep refugia’ hypothesis: focus Caribbean reefs.Coral 2010; 29: 309-327https://doi.org/10.1007/s00338-009-0581-xCrossref (365) However, deeper universally protected recent studies documenting storm damage,8Rocha L.A. Pinheiro H.T. Shepherd B. Papastamatiou Y.P. Luiz O.J. Pyle R.L. Bongaerts threatened ecologically distinct reefs.Science. 2018; 361: 281-284https://doi.org/10.1126/science.aaq1614Crossref (164) plastic pollution,8Rocha thermal bleaching,9Smith T.B. Gyory Brandt M.E. Miller W.J. Jossart Nemeth R.S. unlikely refugia.Global 2016; 22: 2756-2765https://doi.org/10.1111/gcb.13175Crossref (85) Scholar,10Nir Gruber D.F. Shemesh E. Glasser Tchernov D. Seasonal bleaching northern Red Sea.PLoS One. 2014; 9: e84968Crossref (34) disease11Kubomura Yamashiro H. Reimer J.D. Appearance an anomalous black band disease at upper depths bleaching.Dis. Aquat. Org. 131: 245-249Crossref (2) Scholar,12Williams S.M. García-Sais Sabater-Clavell Prevalence stony tissue loss el seco, system off vieques Island, Puerto Rico.Front. 2021; 8Crossref Scholar,13Morais Santos B.A. extent diseases Southwestern Atlantic.Coral 2022; 41: 1317-1322https://doi.org/10.1007/S00338-022-02287-Y/FIGURES/4Crossref depths. addition, lower productivity, rates, reproductive output relative conspecifics.14Liberman Shlesinger Benayahu Octocoral sexual reproduction: temporal disparity between shallow-reef populations.Front. 5: 1-14https://doi.org/10.3389/fmars.2018.00445Crossref (10) Scholar,15Shlesinger Grinblat Rapuano Amit Can replenish reefs? Reduced performance casts doubt.Ecology. 99: 421-437https://doi.org/10.1002/ecy.2098Crossref (56) Scholar,16Feldman coral-reef environments depress reproduction Paramontastraea peresi Sea.Coral 37: 201-214https://doi.org/10.1007/S00338-017-1648-8/TABLES/2Crossref Scholar,17Prasetia Sinniger F. Hashizume K. Harii Reproductive biology brooding Seriatopora hystrix: implications recovery.PLoS 12: 01770344-e177117https://doi.org/10.1371/journal.pone.0177034Crossref (26) Furthermore, abiotic gradients such intensity, spectral range, wave action cause differences physiology,18Mass Einbinder Brokovich Shashar Vago Erez Dubinsky Z. Photoacclimation extremes: metabolism calcification.Mar. Ecol. Prog. Ser. 2007; 334: 93-102https://doi.org/10.3354/meps334093Crossref (131) Scholar,19Martinez Kolodny Scucchia Nevo Levin-Zaidman Paltiel Keren Mass Energy sources depth-generalist mixotrophic pistillata.Front. 988-1016https://doi.org/10.3389/fmars.2020.566663Crossref (21) morphology,20Einbinder Changes diet gradient.Mar. 2009; 381: 167-174https://doi.org/10.3354/meps07908Crossref (71) Scholar,21Goodbody-Gringley Waletich Morphological plasticity generalist coral, Montastraea cavernosa, Bermuda.Ecology. 1688-1690https://doi.org/10.2307/26625782Crossref Scholar,22Malik Martinez Haviv Almuly Zaslansky Polishchuk I. Pokroy Stolarski Molecular fingerprints scleractinian biomineralization: sea surface depths.Acta Biomater. 120: 263-276https://doi.org/10.1016/j.actbio.2020.01.010Crossref (22) molecular processes22Malik Scholar,23Scucchia Malik Putnam H.M. Genetic physiological traits conferring tolerance acidification corals.Global 27: 5276-5294https://doi.org/10.1111/GCB.15812Crossref that make unique. intensity increasing typically results more plate-like colonies, calices, distance polyps, chlorophyll concentrations, photosynthetic efficiency.18Mass Scholar,20Einbinder Finally, though species wide range may be described generalists, peak ecological fitness productivity much narrower.24Roberts T.E. Bridge T.C.L. Caley M.J. Madin J.S. Baird A.H. Resolving zonation paradox corals.Ecology. 2019; 100: e02761https://doi.org/10.1002/ECY.2761Crossref Together, these processes act refugia. Part Refugia suggests following disturbance. This assumes physically connected (i.e., flow), conspecifics reproductively active, viable Like adult corals, (planulae) noted phenotypes closely match those parents, particularly internal mode reproduction.25Scucchia Nativ Neder Goodbody-Gringley Physiological characteristics across 00013https://doi.org/10.3389/fmars.2020.00013Crossref (9) resemblance confer environment acting barrier preventing cross-depth dispersal.26Shlesinger Depth-dependent effects create invisible barriers dispersal.Commun. 4: 202https://doi.org/10.1038/s42003-021-01727-9Crossref (16) morphological characteristics, lipid concentration27Graham Connolly S.R. Sewell M.A. Willis B.L. Uncoupling temperature-dependent depletion larvae.Coral 36: 97-104https://doi.org/10.1007/s00338-016-1501-5Crossref (14) size28Isomura Nishihira Size variation its effect lifetime three pocilloporid corals.Coral 2001; 20: 309-315https://doi.org/10.1007/s003380100180Crossref (101) important dispersal potential, which especially environmental disturbance changes regional climate. If becomes stressful, long-range increase chances offspring will escape stressful environments. progeny new environment, phenotypic is paramount importance. Concomitantly, plankton, possess little directional control therefore advected markedly different origin.29Hata Cumbo V.R. Denny Figueiredo Thomas C.J. poor swimmers require fine-scale structure settle.Sci. Rep. 2249https://doi.org/10.1038/s41598-017-02402-yCrossref (55) Such unpredictability further favor high developmental plasticity.30Crean A.J. Marshall D.J. Coping uncertainty: dynamic bet hedging maternal effect.Philos. Trans. Soc. Lond. B 364: 1087-1096https://doi.org/10.1098/RSTB.2008.0237Crossref Scholar,31Uller Developmental evolution effects.Trends Evol. 23: 432-438https://doi.org/10.1016/J.TREE.2008.04.005Abstract Full Text PDF Although performing translocation assess common demonstrated both fixed traits,19Martinez Scholar,32Wong K.H. de Putron S.J. Becker D.M. Chequer Brooded physiology depends combined press pulse history.Global 3179-3195https://doi.org/10.1111/GCB.15629Crossref only date address same questions regarding planulae. Porites astreoides colonies Bermuda success (ex situ) irrespective (10 45 deep).33Goodbody-Gringley Ju Plasticity early life history stages Bermuda.Front. 8https://doi.org/10.3389/FMARS.2021.702672Crossref contrast, settled equally well simulated conditions, however specialist kuehlmanni than double low light.26Shlesinger When offered choice tiles pre-conditioned depths, exhibited preference environment. when monitored juvenile non-native depth. trends like observed (40 m) hystrix Okinawa, Japan, displayed significantly decreased 5 10 juveniles 20 40 depth.34Prasetia Nakamura Limited reefs.Sci. 121.12: 12836-12912https://doi.org/10.1038/s41598-022-16024-6Crossref (1) interesting mix conclusions concerning probability warrants additional studies. The present sought expand previous We sampled building where it inhabits 0 approximately 60 m5Kramer Scholar,35Loya Sea r strategist.Nature. 1976; 259: 478-480https://doi.org/10.1038/259478a0Crossref (153) over range.18Mass Scholar,36Einbinder Salomon Liran Novel adaptive symbiotic microalgae 3https://doi.org/10.3389/fmars.2016.00195Crossref two-month experiment, we examined how phenotype influence colony establishment contrasting (depth proxy) origin. Building presented studies, also morphology, growth, photophysiology multiple time points degree toward Synchrotron based microCT used visualize 3D compare ability add support notion broad vertical gradient hypothesis, survival, realized competitive interactions nature ultimately define whether populations buffer each other. Newly released volume (0.193 ± 0.009 mm3, n = 76) (0.369 0.010 96; One Way ANOVA, F 60.52, DenDF 19.44, p < 0.0001) (Figure 1C). Despite this, protein concentration 1D). number cells (7140 1846 cells/larva 5) (1750 318 5; 8.27, 8, 0.021) 1E). respiration normalized individual specific per 1F). A mixed model ID (“tank effect”) included random factor selected best (lowest AIC value, anova {stats}, {stats}). Neither nor influenced collection date. Using all i.e., include well, treatments (Kaplan Meier, log rank, > 0.05) S2). Differences plate accounted 10.4% (Cox Mixed Effects fit maximum likelihood; ∼ treatment + (1 | well). Random variance 0.1039). Kaplan-Meier analysis performed subset (n 4–11 inclusive) returned non-significant values comparing treatments. It should available trials (N 39, split two treatments: DD DS). numbers too small give robust desirable repeat this portion replication. Alpha steepness slope electron transport (ETR) limiting conditions; indicate intensities 2A). At earliest point (14 collection), alpha other, (deep-deep) DS (deep-shallow) median SS (shallow-shallow) SD (shallow-deep) spat. On day 21, second point, there no statistical (Kruskal–Wallis test, 0.05). By 35, pattern emerged, whereby spat H 30.03, 0.0001). yield, FV/FM 2B), shows alpha, onwards, (DD DS; Kruskal–Wallis 34.53, grouping sustained strengthened (lower variability) 46. consistently highest (days 14–46 inclusive: 0.68 0.0062). became acclimated surrounding short scales (5 weeks). Treatment saturating irradiance (EK) less mean value sampling 16.22, 14.72, 0.01) 35. ETRMAX variable showing treatment-induced except vs. 21 originating ca. 28% (lm, y intercept 1.76 mm SD) (y 1.26 DD, 1.29 DS) 3). (reduced linear slope) remained similar Correspondingly, 55 collection, termination (recently planulae) smallest average (2.27 1.56 mm) largest (2.73 1.02 mm, one-way Spat asexually produce single secondary (day 35) first 20). Only any six complete polyps timeframe 30, 2/29 individuals). Calyx width (shallow (One adjusted 0.002). age slopes zero S3). X-ray images 37-day-old 4) (3.27 mm), greatest 6), (1.52 mm3). Skeletal 71% (0.44 mm3) 78% (0.34 80% (0.31 respectively (0.0410 mm3/day) lowest (0.0083 mm3/day). spats growing (SS rounded shape, extending directions, acquired oval elongated shape arrangement budding 4). Shallow height ratios flattened, SS: 0.21, DS: 0.22) (0.32) (0.37). Moreover, assessment thickness indicates possessed walls calyxes As degraded stressors, highlighted refugia.3Hoegh-Guldberg express morphotype resulting existing reefs.18Mass Scholar,37Goodbody-Gringley Marchini C. A.D. Goffredo Population cavernosa versus Bermuda.PLoS 2015; 10: e0142427https://doi.org/10.1371/JOURNAL.PONE.0142427Crossref Scholar,38Goodbody-Gringley Wong Glennon ecology astreoides, zones.Coral 483-494https://doi.org/10.1007/s00338-018-1673-2Crossref raises about consequently possibility larval supply reseed study, maternally inherited Symbiodiniaceae endosymbionts newly photochemically experimental irradiances (Figures 2A despite initially exhibiting 2, 14) sign

منابع مشابه

Seasonal Mesophotic Coral Bleaching of Stylophora pistillata in the Northern Red Sea

Coral bleaching occurs when environmental stress induces breakdown of the coral-algae symbiosis and the host initiates algae expulsion. Two types of coral bleaching had been thoroughly discussed in the scientific literature; the first is primarily associated with mass coral bleaching events; the second is a seasonal loss of algae and/or pigments. Here, we describe a phenomenon that has been wit...

متن کامل

Novel Adaptive Photosynthetic Characteristics of Mesophotic Symbiotic Microalgae within the Reef-Building Coral, Stylophora pistillata

Citation: Einbinder S, Gruber DF, Salomon E, Liran O, Keren N and Tchernov D (2016) Novel Adaptive Photosynthetic Characteristics of Mesophotic Symbiotic Microalgae within the Reef-Building Coral, Stylophora pistillata. Front. Mar. Sci. 3:195. doi: 10.3389/fmars.2016.00195 Novel Adaptive Photosynthetic Characteristics of Mesophotic Symbiotic Microalgae within the Reef-Building Coral, Stylophora...

متن کامل

Light enhanced calcification in Stylophora pistillata: effects of glucose, glycerol and oxygen

Zooxanthellate corals have long been known to calcify faster in the light than in the dark, however the mechanism underlying this process has been uncertain. Here we tested the effects of oxygen under controlled pCO2 conditions and fixed carbon sources on calcification in zooxanthellate and bleached microcolonies of the branching coral Stylophora pistillata. In zooxanthellate microcolonies, oxy...

متن کامل

the role of russia in transmission of energy from central asia and caucuses to european union

پس ازفروپاشی شوروی،رشد منابع نفت و گاز، آسیای میانه و قفقاز را در یک بازی ژئوپلتیکی انرژی قرار داده است. با در نظر گرفتن این منابع هیدروکربنی، این منطقه به یک میدانجنگ و رقابت تجاری برای بازی های ژئوپلتیکی قدرت های بزرگ جهانی تبدیل شده است. روسیه منطقه را به عنوان حیات خلوت خود تلقی نموده و علاقمند به حفظ حضورش می باشد تا همانند گذشته گاز طبیعی را به وسیله خط لوله مرکزی دریافت و به عنوان یک واس...

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: iScience

سال: 2023

ISSN: ['2589-0042']

DOI: https://doi.org/10.1016/j.isci.2023.106969